OpenCL Implementation of a Parallel Universal Kriging Algorithm for Massive Spatial Data Interpolation on Heterogeneous Systems

نویسندگان

  • Fang Huang
  • Shuanshuan Bu
  • Jian Tao
  • Xicheng Tan
چکیده

Fang Huang 1,2,*,†, Shuanshuan Bu 1,†, Jian Tao 3,*,† and Xicheng Tan 4,† 1 School of Resources & Environment, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, West Hi-Tech Zone, Chengdu 611731, China; [email protected] 2 Institute of Remote Sensing Big Data, Big Data Research Center, University of Electronic Science and Technology of China, 2006 Xiyuan Road, West Hi-Tech Zone, Chengdu 611731, China 3 Center for Computation & Technology, Louisiana State University, 2039 Digital Media Center, Baton Rouge, LA 70803, USA 4 International School of Software, Wuhan University, 129 Luoyu Road, Wuhan 430079, China; [email protected] * Correspondence: [email protected] (F.H.); [email protected] (J.T.); Tel.: +86-158-8441-7588 (F.H.); +1-225-578-6960 (J.T.) † These authors contributed equally to this work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accuracy Analysis of Precipitation Regionalization Methods Based on Spatial Interpolation Techniques in Zayandeh-Rud River Basin

In the present study, we used 27 precipitation average monthly data from synoptic, climatologic, rain-guage and evaporative stations located in Zayandeh-Rud river basin for the period of 1970-2014. Before interpolating, the missing data in the time series of each station was reconstructed by the normal ratio method. Also, for the data quality control, the Dickey-Fuller and Shapiro-Wilk tests we...

متن کامل

A portable OpenCL implementation of generic particle-mesh and mesh-particle interpolation in 2D and 3D

Hybrid particle–mesh methods provide a versatile framework for simulating discrete and continuous systems. A key component is the forward and backward interpolation of particle data to mesh nodes. These interpolations typically account for a significant portion of the computational cost of a simulation. Due to its regular compute structure, interpolation admits SIMD parallelism, and several GPU...

متن کامل

A Hybrid Parallel Spatial Interpolation Algorithm for Massive LiDAR Point Clouds on Heterogeneous CPU-GPU Systems

Nowadays, heterogeneous CPU-GPU systems have become ubiquitous, but current parallel spatial interpolation (SI) algorithms exploit only one type of processing unit, and thus result in a waste of parallel resources. To address this problem, a hybrid parallel SI algorithm based on a thin plate spline is proposed to integrate both the CPU and GPU to further accelerate the processing of massive LiD...

متن کامل

geoR and geoRglm: Software for Model-Based Geostatistics

The packages geoR and geoRglm are contributed packages to the statistical software system R, implementing methods for model-based geostatistical data-analysis. In this paper we focus on the capabilities of the packages, the computational implementation and related issues, and indicate directions for future developments. geoR implements methods for Gaussian and transformed Gaussian models. The p...

متن کامل

Spatio-Temporal Analysis of Drought Severity Using Drought Indices and Deterministic and Geostatistical Methods (Case Study: Zayandehroud River Basin)

     Drought monitoring is a fundamental component of drought risk management. It is normally performed using various drought indices that are effectively continuous functions of rainfall and other hydrometeorological variables. In many instances, drought indices are used for monitoring purposes. Geostatistical methods allow the interpolation of spatially referenced data and the prediction of v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ISPRS Int. J. Geo-Information

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016